Chapter 7 Review Exercise Solutions

R7.1

a)

for (int i = 0; i < 10; i++)

{

 values[i] = i + 1;

}

b)

for (int i = 0; i <= 10; i++)

{

 values[i] = i * 2;

}

c)

for (int i = 0; i < 10; i++)

{

 values[i] = (i + 1) * (i + 1);

}

d)

for (int i = 0; i < 10; i++)

{

 values[i] = 0;

}

e)

int[] values = {1, 4, 9, 16, 9, 7, 4, 9, 11};

f)

for (int i = 0; i < 10; i++)

{

 values[i] = i % 2;

}

g)

for (int i = 0; i < 10; i++)

{

 values[i] = i % 5;

}

R7.2

a) 25

b) 13

c) 12

d) This loop condition causes an out-of-bounds index error. If the condition were i < 10, total would be 22.

e) 11

f) 25

g) 12

h) -1

R7.3

a) { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }

b) { 1, 1, 2, 3, 4, 5, 4, 3, 2, 1 }

c) { 2, 3, 4, 5, 4, 3, 2, 1, 0, 0 }

d) { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }

e) { 1, 3, 6, 10, 15, 19, 22, 24, 25, 25 }

f) { 1, 0, 3, 0, 5, 0, 3, 0, 1, 0 }

g) { 1, 2, 3, 4, 5, 1, 2, 3, 4, 5 }

h) { 1, 1, 2, 3, 4, 4, 3, 2, 1, 0 }

R7.4

To generate an array with ten random numbers between 1 and 100:

for (int i = 0; i < 10; i++)

{

 values[i] = (int) (Math.random() * 100 + 1);

}

To generate an array with ten different random numbers between 1 and 100:

for (int i = 0; i < 10; i++)

{

 values[i] = (int) (Math.random() * 100 + 1);

 // Check to see if number has been generated before

 int count = 0;

 for (int j = 0; j < i; j++)

 {

 if (values[j] == values[i])

 {

 count++;

 }

 }

 if (count > 0)

 {

 i--; // if it has, back up and try again

 }

}

R7.5

Below, data is an array.

int min = data[0];

int max = data[0];

for (Integer val : data)

{

 if (val > max)

 {

 max = val;

 }

 if (val < min)

 {

 min = val;

 }

}

R7.6

a) The loop iterates over the values 1 to 10 which in turn are used as array indices. Yet, the length of the array is 10, thus its indices range from 0 to 9.

b) The programmer forgot to initialize the array values. One would expect a statement like int[] values = new int[10]; or however many elements the programmer desired.

R7.7

a)

for (Object object : array)

{

 System.out.print(object.toString());

}

b)

int max = array[0];

for (Object object : array)

{

 if (object > max)

 {

 max = object;

 }

}

c)

int count = 0;

for (Object object : array)

{

 if (object < 0)

 {

 count++;

 }

}

R7.8

a)

for (int i = 0; i < values.length; i++)

{

 total = total + values[i];

}

b)

for (int i = 0; i < values.length; i++)

{

 if (values[i] == target)

 {

 return true;

 }

}

c)

for (int i = 0; i < values.length; i++)

{

 values[i] = 2 * values[i];

}

R7.9

a)

for (double x : values)

{

 total = total + x;

}

b)

int pos = 0;

for (double x : values)

{

 if (pos >= 1)

 {

 total = total + x;

 }

 pos++;

}

c)

int pos = 0;

for (double x : values)

{

 if (x == target)

 {

 return pos;

 }

 pos++;

}

R7.10

a) ArrayList can’t take a Java primitive as a type, rather it needs a wrapper class, in this case Integer.

b) In this case the new ArrayList did not define its generic type. One would expect to see new ArrayList<Integer>(); as the initial value. In Java 7, however, the syntax shown is acceptable.

c) Parentheses () are required after new ArrayList<Integer>.

d) The initial size of the ArrayList already is 0 elements, thus the set method cannot be used to set them.

e) The ArrayList reference values is not initialized. The code = new ArrayList<Integer>(); should be to the right of the declaration.

R7.11

The index of an array specifies the array position in which the element can be read or set.

Legal index values start at 0 and go to the length of the array minus one.

A bounds error occurs when an array is referenced with an index that is outside the range of legal array index values.

R7.12

The following is a program that contains a bounds error.

public class R6_12

{

 public static void main(String[] args)

 {

 int[] array = new int[10];

 array[10] = 10;

 }

}

When run it outputs the following error:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

 at R6_12.main(R6_12.java:6)

R7.13

Scanner in = new Scanner(System.in);

int myArray[10];

for (int i = 0; i < 10; i++)

{

 System.out.println("Enter a number: ");

 myArray[i] = in.nextInt();

}

for (int j = 9; j >= 0; j--)

{

 System.out.print(myArray[j] + " ");

}

R7.14

The headers of the described methods.

a) public void sortDecreasing(int[] arr, int currentSize)

b) public void printWithString(int[] arr, int currentSize, string sep)

c) public int numItemsBelow(int[] arr, int currentSize, int value)

d) public void removeItemsLessThan(int[] arr, int currentSize, int value)

e) public void copyLessThan(int[] source, int firstSize, int[] target, int secondSize, int value)

R7.15

	i
	output

	0
	32

	1
	| 54

	2
	| 67.5

	3
	| 29

	4
	| 35

R7.16

	element
	matches

	110
	{110}

	90
	{110}

	100
	{110}

	120
	{110, 120}

	80
	{110, 120}

R7.17

	pos
	found

	0
	false

	1
	false

	2
	false

	3
	true

	pos
	found

	0
	false

	1
	false

	2
	false

	3
	false

	4
	false

	5
	true

R7.18

	currentSize
	i
	values

	5
	
	{110, 90, 100,120,80}

	5
	3
	{110, 90, 120,120,80}

	5
	4
	{110, 90, 120,80,80}

	4
	5
	{110, 90, 120,80,80}

R7.19

Copy the first element into a variable, x.

Loop through the first length – 2 positions of the array using pos as a counter

 Copy the element at pos + 1 to the element at pos.

Copy x into the last position of the array.

R7.20

pos = 0

while pos < length of array

 if the element at pos is negative

 remove the element at pos.

 else

 increment pos.

R7.21

// x is the element to insert

pos = 0

inserted = false

while pos < length of array and not inserted

 if the element at pos is less than x

 insert x at pos.

 inserted = true.

 else

 increment pos.

if not inserted

 insert x at the end of the array.

R7.22

longestRun = 0

pos = 0

while pos < length of array - 1

 if element at pos is equal to element at pos + 1

 currentRun = 0

 currentElement = element at pos

 while pos < length of array - 1 and currentElement equals element at pos

 increment pos

 increment currentRun

 if currentRun > longestRun

 longestRun = currentRun

 else

 increment pos

print longestRun

R7.23

The values variable is a reference to another array. Setting it equal to numbers causes the values reference to point to the numbers array, but it does not change the value of the object originally referred to by values.

R7.24

To find the smallest rectangle containing the points defined by the two arrays, compute the max and min of the x-values and the max and min of the y-values. With those four values, you can define the locations of the x- and y-coordinates of the rectangle as follows:

 Upper left corner: (min x, max y)

 Lower left corner: (min x, min y)

 Upper right corner: (max x, max y)

 Lower right corner: (max x, min y)

R7.25

If the array is already sorted, we no longer need to find the position of the lowest quiz score. If the array is sorted from lowest to highest, then the lowest quiz score is in the first position in the array. Technically, we can even compute the sum without actually removing the lowest element, because it is always in the first location. We can find the sum simply by starting the loop at position 1 instead of position 0:

public double sum(double[] values)

{

 double total = 0.0;

 // Start loop count at 1 to skip lowest score

 for (int n = 1; n < values.length; n++)

 {

 total = total + values[n];

 }

 return total;

}

R7.26

Pseudocode for an algorithm using “removes” and “inserts” instead of swaps.

i = 0

j = size / 2

while (i < size / 2)

 Remove item at position j.

 Insert removed item at position i.

 i++

 j++

I will try this algorithm out with four coins, a penny (P), a nickel (N), a dime (D), and a quarter (Q).

Position 0 1 2 3

 P N D Q

i = 0, j = 2, Remove coin at position j, insert at position 0

Increment i and j.

Position 0 1 2 3

 D P N Q

i = 1, j = 3, Remove coin at position j, insert at position 1

Increment i and j.

Position 0 1 2 3

 D Q P N

i = 2, j = 4.

The reason this is always less efficient that using the swapping algorithm is that our new remove/insert algorithm above requires two method calls (one for the remove, and one for the insert) each time a coin is removed. In the swapping algorithm, one method call (the swap) moves both coins at the same time.

Another way to look at it is that each time you remove a coin and each time you insert one, you have to move elements in the array to new locations. (If you remove an element, all the elements above it must move down one. If you insert, all the elements above it must move up one.) When you do this as a single swap operation, only the two elements affected are moved. The other elements do not have to move during a swap.

R7.27

When I laid the coins and paper clips out as described in this problem (a series of coins each with a number of paperclips beneath it), I envisioned a two-dimensional array with N rows and 2 columns. The first column held the value of the coin (whether it was a penny, nickel, dime, or quarter) and the second column held a cumulative count corresponding to the number of that type of coin in column 1. For instance, if I had a total of 10 coins consisting of 3 pennies (P), 2 nickels (N), 4 dimes (D), and 1 quarter (Q), my initial two-dimensional array might look like this (with all of the “counts” in the second column set to zero):

	D
	0

	D
	0

	P
	0

	Q
	0

	P
	0

	N
	0

	D
	0

	N
	0

	D
	0

	P
	0

Then my algorithm for counting the coins would use a nested loop like this:

 Loop (int i = 0; i < 10; i++)

 Loop (int j = 0; j < 10; j++)

 if coins[j][0] equals coins[i][0]

 Increment the count at location coins[j][i].

 End inner loop.

 End outer loop.

In other words, you look at the coin in the first location (a dime), and then walk through the two-dimensional array in the inner for loop, incrementing the count of any dime you find in the array. Then you look at the second coin (also a dime), and loop through the inner for loop again, incrementing the count for any dimes you find, and so on.

When you have walked through the entire array in this manner, your final two-dimensional array should look like this:

	D
	4

	D
	4

	P
	3

	Q
	1

	P
	3

	N
	2

	D
	4

	N
	2

	D
	4

	P
	3

Then it is a simple matter of looping through the array, using the algorithms given in this chapter, to find the position of the element with the maximum count in the second column.

R7.28

for (int i = 0; i < ROWS; i++)

{

 for (int j = 0; j < COLUMNS; j++)

 {

 values[i][j] = 0;

 }

}

for (int i = 0; i < ROWS; i++)

{

 for (int j = 0; j < COLUMNS; j++)

 {

 values[i][j] = (i + j) % 2;

 }

}

for (int j = 0; j < COLUMNS; j++)

{

 values[0][j] = 0;

 values[ROWS - 1][j] = 0;

}

int sum = 0;

for (int i = 0; i < ROWS; i++)

{

 for (int j = 0; j < COLUMNS; j++)

 {

 sum = sum + values[i][j];

 }

}

for (int i = 0; i < ROWS; i++)

{

 for (int j = 0; j < COLUMNS; j++)

 {

 System.out.print(values[i][j] + " ");

 }

 System.out.println();

}

R7.29

Assume the two-dimensional array, data, has M rows and N columns:

Loop from row=0 to row=M

 Loop from column=0 to column=N

 If row is 0 or M

 Set data[row][column] equal to -1.

 Else if column is 0 or N

 Set data[row][column] equal to -1.

 End inner loop.

End loop.

R7.30

When traversing backward, the indices of the array list have to be decremented (instead of incremented) in the for loop. This process continues while the index i is greater than zero (0). When an object is removed from the array only the indices of the objects greater than the index removed are effected. The loop is only working with the indices less than the index of the object removed, so there is no issue.

R7.31

a) True.

b) False.

c) False.

d) False.

e) False.

f) True.

g) True.

R7.32

a) Verify that the lengths are equal, and then set a Boolean false if any mismatch occurs.

boolean equal = true;

if (data1.size() != data2.size())

{

 equal = false;

}

for (int i = 0; i < data1.size() && equal; i++)

{

 if (data1.get(i) != data2.get(i))

 {

 equal = false;

 }

}

b) Create a second array list that is empty, then loop over the first:

ArrayList<Integer> data2 = new ArrayList<Integer>();

for (int i = 0; i < data1.size(); i++)

{

 data2.add(data1.get(i));

}

c) Loop over all positions in the array list and set each one to 0:

for (int i = 0; i < data.size(); i++)

{

 data.set(i, 0);

}

d) Loop while the array list still has elements in it and remove the element at position 0:

while (data.size() > 0)

{

 data.remove(0);

}

More simply, one can call ArrayList’s clear method:

data.clear();

R7.33

a) True

b) True

c) False

d) True

e) False

f) False.

R7.34

Regression testing is testing done to ensure changes to code haven't broken any previously existing functionality. A test suite is a set of tests for the code that check if existing functionality works.

R7.35

Debugging cycling is a phenomenon where an issue is resolved that is later seen again after another issue's fix breaks the original fix for the resurfaced issue.

 © John Wiley & Sons, Inc. All rights reserved.

